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1. INTRODUCTION 

TRANSIENT natural convection resulting from a sudden 
change in the surface condition has been studied by various 
investigators. Many of these studies were recently sum- 
marized [l]. In all such transients, the initial temperature 
t(y, Z) and velocity ub, T) are purely diffusive. Convective 
effects propagate downstream of the leading edge at a finite 
rate, resulting eventually in steady boundary region trans- 
port. 

Goldstein and Briggs [Z] proposed a model for the ter- 
mination of one-dimensional transport based on a ~ximum 
leading edge penetration distance, _+s, at a given time, Z, 
where 

X&T) = max 
j 

’ u(y, 5) d<. (1) 
0 

Yang [3] and later Nanbu [4] examined the boundary layer 
form of the governing transient equations. They concluded 
that the departure from the purely diffusive transport occurs 
with the appearance of an essential singularity in the equa- 
tions at a critical time. Brown and Riley [5] pointed out that 
this critical time yields a different leading edge propagation 
criterion than equation (1) 

x,&f = 
s 

* max MY. 0) dt. (2) 11 

Calculations for the sudden change in surface temperature 
condition for Pr = 1 yielded only slightly faster prcpagation 
rates than equation (I). 

Many experimental investigations have attempted to ver- 
ify the above propagation criteria in gases [6-g] and liquids 
[l]. However, the measured propagation distances have been 
significantly larger than those predicted by the models. 

None of the studies listed above has analyzed in detail the 
implications of using equations (1) and (2) on the transient 
development of various transport quantities. In the present 
study, four different propagation criteria are obtained by first 
assuming and later justifying no overshoots from eventual 
steady values in selected transport quantities. The physical 
quantities are surface temperature, mass flow rate, maximum 
tangential velocity and surface shear stress. 

Propagation rates have been computed for a sudden input 
of internal energy generation rate within a vertical surface. 
At the surface 

c”g(O,r)--kE(O,r)=q: for s>O. 
8Y 

(3) 

The calculations presented here clearly show that propa- 
gation rates must be significantly faster than those predicted 
by either equation (1) or equation (2) to avoid unrealistic 
overshoots in transport quantities. The different analytical 
propagation rate models are also compared with all available 
experimental data. 

The mechanisms of departure from one-dimensional trans- 

port considered here are purely buoyancy induced in nature. 
Disturbances having a thermoacoustic origin are not con- 
sidered, since the resulting frequencies and arrival times are 
several orders of magnitude faster than actual measured 
times. In a numerical study of transient natural convection 
in enclosures at varying gravity levels, Spradley and Chur- 
chill [9] have found these thermoacoustic effects on transport 
to be small at terrestrial intensity of gravity. 

2. ADDITIONAL PROPAGATION CRITERIA 

The following criteria are obtained by first postulating that 
the physical quantity being considered does not overshoot 
its corresponding steady level, during the one-dimensional 
transport. It will be shown in Section 3 that these criteria 
automatically hold when unrealistic overshoots in the mass 
flow rate are not permitted. In the following, one-dimen- 
sional transport quantities have been obtained for the surface 
condition in equation (3) from Table 1 of Goldstein and 
Briggs [2] and the steady, self-similar solutions for the uni- 
form flux surface from Gebhart [10]. 

2. I Propagation distances for no overshoot in surface tem- 
perature 

This requirement implies at any downstream x 

it*,tx,w t,) 3 (fo(O,TF I,). (4) 

Equation (4) can be rearranged using expressions for r,(O, Z) 
and to,. After some simplification 

x, 3 _i (-~‘@N4&zc 0 4 
~ k (fX)‘W(F, (ar”2))S 

Pr’ (5) 

where 

ey” erfc aT”* 
j7, (UT 1’2) = -1. + 1 

Jx at”’ 
- --. az I!2 (6) 

In equation (5) 

2.2. Prouaaation distances for no overshoot in mass Row rate 
The reqkred condition is 

zi 

s 

5x) 
u,,(x>Y) dY 2 U(Y, ~1 dy. 

0 

This results in 

(7) 
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NOMENCLATURE 

; 
(pc,k) yc” Y normal distance from surface 
(Gr,/4)‘j4/x y,,, normal location of velocity maximum. 

cl1 thermal capacity of the surface, per unit area 
exposed to fluid Greek symbols 

5 specific heat of fluid 

; 

thermal diffusivity 

9 acceleration due to gravity coefficient of thermal expansion 

Gr, Grashof number, gjIx3(t0- t,)/v* ? non-dimensional horizontal coordinate, 
i”erfcz nth integral of complimentary error ~lx(GrJ4) 1’4 

function n dynamic viscosity 
k thermal conductivity of fluid v kinematic viscosity 
Pr Prandtl number 5 non-dimensional location, y,,,/2 J(U) 

I, 
qrn steady surface heat flux P density 
t temperature r time 
U component of velocity parallel to the surface * stream function. 
x downstream distance 
xaR propagation distance from equation (2) Subscripts 
xoa propagation distance from equation (1) 0 at the surface 

x, propagation distance for model i; i = 14 cc in the ambient fluid 
’ X, non-dimensional propagation distance ss in steady state. 

where and 

F,(azl/*) = ! - 2 1 1 F,,,(~$ar”*) = (45 i’erfc 5 

4 3 J&l= + 2a27 - J&312 

, (1 -eozr erfc a7’12) 
+ & (erfc c - 2az1’2 ierfc c) 

,o, 
T 

2a4r2 t7J 

In equation (8), f(m) is the value of the non-dimensional 
stream function&) = +(x. ~)/4v(Gr,/4)“~, as rl-+ co. 

2.3. Propagation distances for no overshoot in maximum 
velocity 

This requires that the maximum tangential velocity from 
the short time solution not exceed the eventual maximum 
steady velocity at a given downstream location. Math- 
ematically 

max (u,,(x,Y)) 3 max MY, 4). (10) 

In equation (lo), both maximizations are over y. The 
above condition implies 

x1 a gBq2(~~)“2T2 F,,,(<, Pr,m”*) 51) 

4k Pr”’ ( 1 - Pr)fL 1 (-4’(O))“’ 

5 
--e”27+~2”,“*’ erfc(c+ar”2)). (13) 

a2t 

In equations (Ila) and (llb), f&. is the maximum non- 
dimensional velocity of the steady state boundary region 
flow given by (see ref. [lo]) 

max (u&, YN 
fk = (4v/x)(Gr,/4)"' (14) 

Also, r is the non-dimensional location of the maximum 
one-dimensional velocity from Goldstein and Briggs [2]. 

2.4. Propagation distances for no overshoot in surface shear 
stress 

The required condition is 

This can be recast as 

(for Pr # 1) 

~ sP4k (4 4k ‘W ~2~~~“2)~~(_o’(o))2,1 

x4 .g~(a~)11212(-~!~~3’2[~~~~~~~o~5’2 (I(j) 

r ” where 

(for Pr = 1) (llab) 2 

where 
F.&zt”2) = 1- ~ - T 

aT112 Jn 
’ (ea2’ erfc a7’j2- 1). (17) 

a 5 

F,,, (5, Pr,ar”2) = 8(i3 erfc t--i’ erfc t/JPr) 
In equation (16) 

+ l ] ~ 
a3rW 

ea’r+ zm”*C erfc (( faz 112) 
f”(0) = (2 (x, 0)) x2,/(4v(Gr,i4)314). 

_e*‘r+2&iJpr erfc (t/ JprfaT l/2)] 

,& (-2as”‘)‘i’erfc 5 

2.5. Asymptotic behavior of very small and very large thermal 
capacity surfaces 

For ~r’/~ >> 1 and aT ‘12 CC 1, the functions F,, F2, F3, I, F3,2 
and F4 can be simplified. For at”2 < 1, the following series 
is utilized 

- ,& ( - 2ar li2)rjr erfc 6 /JPr}) 
eozT+ 2m”ze erfc (r + ar ‘12) = erfc 5 

(12) -2ar”*ierfc~+4a2ri2erfc~-... (18) 
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Also, as a?‘!’ + uo 

e”” erfc art,” -+ 0. (19) 

3. COMPUTATIONS AND RESULTS 

Lower bounds on .xI-xq were computed using the for- 
mulation in Section 2. These distances were then non- 
dimensionalized in the following manner 

x: = .x,!t/,qpq; (as) “V ; for i = 14. (20) 

Both s’!-X; and equation (1) are plotted in Figs. I and 2 for 
Pr = 0.72, nitrogen, and Fr = 6.7, water. Equation (2) is 
only about 5% higher and is not shown to preserve clarity. 
These figures provide estimates of propagation distances for 
any surface of known thermal capacity. Asymptotes for 
UT’:* + co, surfaces with negligible thermal capacity, are 
shown as short horizontal lines in the upper right region. 
Also shown in Figs. I and 2 are samples of propagation rate 
measurements from all previous studies. 

In gases, Fig. 1 shows that for at”* < 8, equation (1) gives 
the slowest propagation rate of all models. The fastest rate 
is given by the requirement in Section 3.2 that no overshoot 
occur in the mass flow rate. This also results in no overshoot 
in any of the other three transport quantities considered. 
Looked at in another way, equation (1) always predicts an 
overshoot in the mass flow rate. For a Boussinesq Auid, such 
overshoot is unrealistic. An etllux of mass from the flow 
region must take place to remove the excess entrained fluid. 
This has not been observed in any experimental studies of 
laminar transients. 

It is clear from Fig. I that for ~5’~’ $ 8, x’i yields the 
slowest propagation rate. This implies that no overshoot in 
the surface temperature would be predicted during the one- 
dimensional transport, from any of the other criteria. This 
is in agreement with all experimental studies to date. 

The experimental data [6-81 in Fig. 1 are in the range of 
~5’:~ = 0.41.4. In this range, all propagation criteria show 
a strong dependence on ti7:‘~‘. Depending upon aTI”, the 
propagation distance x’~ is I .261.53 times x&,. All exper- 

Pr i 0.72 
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FIG. I. Non-dimensional propagation distances in air. 
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FIG. 2. Non-dimensional propagation distances in water. 

imental points are above x;, those from Mahajan and 
Gebhart [8] being significantly higher. The considerable scat- 
ter in the data is due, in part, to the inability to sharply 
identify the first departures from the short-time transport 
[6]. It is also noted that xi, provides only the lower limit on 
the propagation rate. If the one-dimensional phase is only 
a small fraction of the total transient time. as is true of 
measurements in Fig. I, the conductive transport will end 
before the mass flow rate reaches the steady value. 

The data from refs, (671 are interferometer measurements 
of first departure times for surface heat transfer. Those from 
ref. [8] are sensor measurements at the outer edge of the 
transport region. As is clear from Fig. 1, when computation 
of surface transport is of primary interest, equation (8) can 
be used with reasonable accuracy. 

Propagation distances for water, Pr = 6.7, are shown in 
Fig. 2. As for gases, the criterion requiring no overshoot in 
mass flow rate gives the fastest propagation. Use of equation 
(1) again gives unrealistic overshoots in the mass flow rate. 
Also shown in Fig. 2 are data from ref. [l], which fall in the 
range of ar “’ = 1634. In contrast to Fig. 1, in this range, 
all models show only a weak dependence on ar’!‘. This is to 
be expected, due to the much smaller surface thermal 
capacity effects in water [l]. 

The data in Fig. 2 have been obtained both from flow 
visualizations and local hot film and thermocouple measure- 
ments. Excellent agreement is seen between the data and the 
mode1 from Section 2.2. The transient times ranged from 20 
to 90 s, with the one-dimensional transport occupying a very 
large fraction of the entire transient. A much sharper deter- 
mination of the first departure times was therefore possible. 

4. CONCLUSIONS 

Based on the computations presented above, it is clear 
that the propagation models based on either equation (I) or 
equation (2) result in unrealistic overshoots in the mass flow 
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rate. The faster propagation rates predicted by the model in 
Section 2.2 show good agreement with data in water. In 
nitrogen, the data are higher even though they exhibit sig- 
nificant scatter. For both liquids and gases, however, equa- 
tion (8) provides a better estimate of the one-dimensional 
transport termination times than any other previous criteria. 
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INTRODUCTION 

BUOYANCY driven flow past bodies immersed in a saturated 
porous medium has been the subject of the studies by Cheng 
[l-3]. The effect of uniform mass flux on the free convection 
boundary layer on a vertical wall in a saturated porous 
medium was studied by Merkin [4]. Cheng [S] presented a 
similarity solution for the case of wall temperature and 
suction velocity varying as powers of X, the longitudinal 
distance. In all these problems numerical solutions have been 
given for selected values of a parameter. In this note, an 
analytical series solution based on Von Mises transformation 
is given for the problem studied by Cheng [5]. It is found 
that even a few terms of the series are sufficient to yield the 
numerical results reported in ref. [S]. The treatment is similar 
to that of Merkin 161. However, the equation and the boun- 
dary conditions are different. 

THE EQUATION AND SERIES SOLUTION 

The boundary layer equations of momentum and energy 
for the boundary layer flow past a vertical plate embedded 
in a saturated porous medium can be reduced to the form 
[51 

S”-@=:O (1) 

where the plate temperature and suction or injection velocity 
are respectively given by 

T,- T, = Ax” (3) 

(4) 

and 

where 

v, = a.y” 

II = (A-- 1)/Z. 

The boundary conditions are 

p=o: B=l, f=fw 

~+m:o=o, f'=O (5) 

where fw is the non-dimensional form of suction (fw > 0) or 
injection (fw < 0) velocity. Eliminating 8 gives 

.1."'+qAjy-~.(f~)2 =o, (6) 

Following Merkin [6], we transform equation (6), expressing 
p = p(4) where 

P =f’(qX (P = c-f(v)* c =ffa). 
The modified equation is 

(7a-c) 

(8) 

The boundary conditions on p are 

4=0: p=o 

C#t=c-fw: p= 1. 

We expand p in the series form 

p = 1 a& 

(9) 

(10) 


